Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
PLoS One ; 17(4): e0266124, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-1883663

RESUMEN

Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is one of the most severe global pandemic due to its high pathogenicity and death rate starting from the end of 2019. Though there are some vaccines available against SAER-CoV-2 infections, we are worried about their effectiveness, due to its unstable sequence patterns. Therefore, beside vaccines, globally effective supporting drugs are also required for the treatment against SARS-CoV-2 infection. To explore commonly effective repurposable drugs for the treatment against different variants of coronavirus infections, in this article, an attempt was made to explore host genomic biomarkers guided repurposable drugs for SARS-CoV-1 infections and their validation with SARS-CoV-2 infections by using the integrated bioinformatics approaches. At first, we identified 138 differentially expressed genes (DEGs) between SARS-CoV-1 infected and control samples by analyzing high throughput gene-expression profiles to select drug target key receptors. Then we identified top-ranked 11 key DEGs (SMAD4, GSK3B, SIRT1, ATM, RIPK1, PRKACB, MED17, CCT2, BIRC3, ETS1 and TXN) as hub genes (HubGs) by protein-protein interaction (PPI) network analysis of DEGs highlighting their functions, pathways, regulators and linkage with other disease risks that may influence SARS-CoV-1 infections. The DEGs-set enrichment analysis significantly detected some crucial biological processes (immune response, regulation of angiogenesis, apoptotic process, cytokine production and programmed cell death, response to hypoxia and oxidative stress), molecular functions (transcription factor binding and oxidoreductase activity) and pathways (transcriptional mis-regulation in cancer, pathways in cancer, chemokine signaling pathway) that are associated with SARS-CoV-1 infections as well as SARS-CoV-2 infections by involving HubGs. The gene regulatory network (GRN) analysis detected some transcription factors (FOXC1, GATA2, YY1, FOXL1, TP53 and SRF) and micro-RNAs (hsa-mir-92a-3p, hsa-mir-155-5p, hsa-mir-106b-5p, hsa-mir-34a-5p and hsa-mir-19b-3p) as the key transcriptional and post- transcriptional regulators of HubGs, respectively. We also detected some chemicals (Valproic Acid, Cyclosporine, Copper Sulfate and arsenic trioxide) that may regulates HubGs. The disease-HubGs interaction analysis showed that our predicted HubGs are also associated with several other diseases including different types of lung diseases. Then we considered 11 HubGs mediated proteins and their regulatory 6 key TFs proteins as the drug target proteins (receptors) and performed their docking analysis with the SARS-CoV-2 3CL protease-guided top listed 90 anti-viral drugs out of 3410. We found Rapamycin, Tacrolimus, Torin-2, Radotinib, Danoprevir, Ivermectin and Daclatasvir as the top-ranked 7 candidate-drugs with respect to our proposed target proteins for the treatment against SARS-CoV-1 infections. Then, we validated these 7 candidate-drugs against the already published top-ranked 11 target proteins associated with SARS-CoV-2 infections by molecular docking simulation and found their significant binding affinity scores with our proposed candidate-drugs. Finally, we validated all of our findings by the literature review. Therefore, the proposed candidate-drugs might play a vital role for the treatment against different variants of SARS-CoV-2 infections with comorbidities, since the proposed HubGs are also associated with several comorbidities.


Asunto(s)
Antivirales , Tratamiento Farmacológico de COVID-19 , Biología Computacional , Reposicionamiento de Medicamentos , Síndrome Respiratorio Agudo Grave , Antivirales/farmacología , Humanos , MicroARNs/genética , Simulación del Acoplamiento Molecular , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo , SARS-CoV-2/genética , Síndrome Respiratorio Agudo Grave/tratamiento farmacológico , Factores de Transcripción/genética , Transcriptoma
2.
Sci Rep ; 12(1): 4279, 2022 03 11.
Artículo en Inglés | MEDLINE | ID: covidwho-1740476

RESUMEN

The pandemic threat of COVID-19 has severely destroyed human life as well as the economy around the world. Although, the vaccination has reduced the outspread, but people are still suffering due to the unstable RNA sequence patterns of SARS-CoV-2 which demands supplementary drugs. To explore novel drug target proteins, in this study, a transcriptomics RNA-Seq data generated from SARS-CoV-2 infection and control samples were analyzed. We identified 109 differentially expressed genes (DEGs) that were utilized to identify 10 hub-genes/proteins (TLR2, USP53, GUCY1A2, SNRPD2, NEDD9, IGF2, CXCL2, KLF6, PAG1 and ZFP36) by the protein-protein interaction (PPI) network analysis. The GO functional and KEGG pathway enrichment analyses of hub-DEGs revealed some important functions and signaling pathways that are significantly associated with SARS-CoV-2 infections. The interaction network analysis identified 5 TFs proteins and 6 miRNAs as the key regulators of hub-DEGs. Considering 10 hub-proteins and 5 key TFs-proteins as drug target receptors, we performed their docking analysis with the SARS-CoV-2 3CL protease-guided top listed 90 FDA approved drugs. We found Torin-2, Rapamycin, Radotinib, Ivermectin, Thiostrepton, Tacrolimus and Daclatasvir as the top ranked seven candidate drugs. We investigated their resistance performance against the already published COVID-19 causing top-ranked 11 independent and 8 protonated receptor proteins by molecular docking analysis and found their strong binding affinities, which indicates that the proposed drugs are effective against the state-of-the-arts alternatives independent receptor proteins also. Finally, we investigated the stability of top three drugs (Torin-2, Rapamycin and Radotinib) by using 100 ns MD-based MM-PBSA simulations with the two top-ranked proposed receptors (TLR2, USP53) and independent receptors (IRF7, STAT1), and observed their stable performance. Therefore, the proposed drugs might play a vital role for the treatment against different variants of SARS-CoV-2 infections.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , COVID-19/genética , Reposicionamiento de Medicamentos , SARS-CoV-2/efectos de los fármacos , Estudios de Casos y Controles , Redes Reguladoras de Genes/genética , Marcadores Genéticos/genética , Humanos , Simulación del Acoplamiento Molecular , Mapas de Interacción de Proteínas/genética
3.
Comput Biol Chem ; 93: 107533, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: covidwho-1275231

RESUMEN

Coronavirus disease 2019 (COVID-19) is the newly emerging viral disease, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The epidemic sparked in December 2019 at Wuhan city, China that causes a large global outbreak and a major public health catastrophe. Till now, more than 129 million positive cases have been reported in which more than 2.81 million were dead, surveyed by Johns Hopkins University, USA. The diverse symptoms of COVID-19 and an increased number of positive cases throughout the world hypothesize that this virus assembles more variants that are preventing the pursuit of its adequate treatment as well as the development of the vaccine. In this study, 715 SARS-CoV-2 genomes were retrieved from the gisaid and NCBI viral resources involving 39 countries and 164 different types of variants were identified based on 108 Single Nucleotide Polymorphisms (SNPs) in which the ancestral type of SARS-CoV-2 was found as the most frequent and the most prevalent in China. Moreover, variant type A104 was identified as the most frequent in the USA and A52 in Japan. The study also recognized the most common SNPs such as 241, 3037, 8782, 11083, 14408, 23403, and 28144 as well as variants regarding base-pair, C > T. A total of 65 non-synonymous SNPs were recognized which were mostly located in nucleocapsid phosphoprotein, Non-structural protein 3(Nsp3), and spike glycoprotein encoding gene. Molecular divergence analysis revealed that this virus was phylogenetically related to Yunnan 2013 bat strain. This study indicates SARS-CoV-2 frequently alters their genetic material, which mostly affects the nucleocapsid phosphoprotein, and spike glycoprotein-encoding gene and makes it very challenging to develop SARS-Cov-2 vaccine and antibody-mediated rapid diagnostic kit.


Asunto(s)
COVID-19/virología , Genoma Viral , SARS-CoV-2/genética , COVID-19/epidemiología , Proteínas de la Nucleocápside de Coronavirus/genética , Brotes de Enfermedades , Evolución Molecular , Genómica , Fosfoproteínas/genética , Filogenia , Polimorfismo de Nucleótido Simple , Glicoproteína de la Espiga del Coronavirus/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA